Non-commutative double-sided continued fractions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A ug 2 00 1 CONTINUED FRACTIONS , MODULAR SYMBOLS , AND NON – COMMUTATIVE GEOMETRY

Abstract. Using techniques introduced by D. Mayer, we prove an extension of the classical Gauss–Kuzmin theorem about the distribution of continued fractions, which in particular allows one to take into account some congruence properties of successive convergents. This result has an application to the Mixmaster Universe model in general relativity. We then study some averages involving modular s...

متن کامل

Generalized Continued Logarithms and Related Continued Fractions

We study continued logarithms as introduced by Bill Gosper and studied by J. Borwein et. al.. After providing an overview of the type I and type II generalizations of binary continued logarithms introduced by Borwein et. al., we focus on a new generalization to an arbitrary integer base b. We show that all of our so-called type III continued logarithms converge and all rational numbers have fin...

متن کامل

Continued Logarithms and Associated Continued Fractions

We investigate some of the connections between continued fractions and continued logarithms. We study the binary continued logarithms as introduced by Bill Gosper and explore two generalizations of the continued logarithm to base b. We show convergence for them using equivalent forms of their corresponding continued fractions. Through numerical experimentation we discover that, for one such for...

متن کامل

Periodic Continued Fractions And

We investigate when an algebraic function of the form φ(λ) = −B(λ)+ √ R(λ) A(λ) , where R(λ) is a polynomial of odd degree N = 2g + 1 with coefficients in C, can be written as a periodic α-fraction of the form

متن کامل

Palindromic continued fractions

An old problem adressed by Khintchin [15] deals with the behaviour of the continued fraction expansion of algebraic real numbers of degree at least three. In particular, it is asked whether such numbers have or not arbitrarily large partial quotients in their continued fraction expansion. Although almost nothing has been proved yet in this direction, some more general speculations are due to La...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2020

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8121/aba29c